3,568 research outputs found

    The limitations of Slater's element-dependent exchange functional from analytic density functional theory

    Full text link
    Our recent formulation of the analytic and variational Slater-Roothaan (SR) method, which uses Gaussian basis sets to variationally express the molecular orbitals, electron density and the one body effective potential of density functional theory, is reviewed. Variational fitting can be extended to the resolution of identity method,where variationality then refers to the error in each two electron integral and not to the total energy. It is proposed that the appropriate fitting functions be charge neutral and that all ab initio energies be evaluated using two-center fits of the two-electron integrals. The SR method has its root in the Slater's Xalpha method and permits an arbitrary scaling of the Slater-Gaspar-Kohn-Sham exchange-correlation potential around each atom in the system. Of several ways of choosing the scaling factors (Slater's exchange parameters), two most obvious are the Hartree-Fock (HF), alpha_HF, values and the exact atomic, alpha_EA, values. The performance of this simple analytic model with both sets for atomization energies of G2 set of 148 molecules is better than the local density approximation or the HF theory, although the errors in atomization energy are larger than the target chemical accuracy. To improve peformance for atomization energies, the SR method is reparametrized to give atomization energies of 148 molecules to be comparbale to those obtained by one of the most widely used generalized gradient approximations. The mean absolute error in ionization potentials of 49 atoms and molecules is about 0.5 eV and that in bond distances of 27 molecules is about 0.02 Angstrom. The overall good performance of the computationally efficient SR method using any reasonable set of alpha values makes it a promising method for study of large systems.Comment: 33 pages, Uses RevTex, to appear in The Journal of Chemical Physic

    Rapid synthesis of supported single metal nanoparticles and effective removal of stabilizing ligands

    Get PDF
    A method is introduced to rapidly (<30 min) synthesize single metal nanoparticles with narrow size distribution in a simple way. It is based on the electrospraying of a metal precursor solution into a surfactant solution, which acts as a reducing and stabilizing agent. This synthesis method is demonstrated for the production of Ag and Au nanoparticles, which are incorporated onto carbonaceous and non-carbonaceous supports. The nanoparticle size depends on the internal diameter of the spraying nozzle. The removal of the stabilizing surfactant (dodecylamine; DDA) is also examined via thermal annealing and oxygen plasma treatments. Thermal annealing at a low temperature rate is found to be the most effective, as it completely removes DDA from the metal nanoparticles without inducing changes in their particle size. To verify that the supported Ag nanoparticles post calcination are surfactant-free and, thus, their surface sites are active, their oxygen reduction reaction (ORR) activity is measured in alkaline media, demonstrating similar values to the ones reported in the literature

    Effect of extended short-circuiting in proton exchange membrane fuel cells

    Get PDF
    Short-circuiting is regularly utilized in Proton Exchange Membrane Fuel Cells (PEMFCs) to reverse short-term reversible catalyst degradation. However, do these improvements in fuel cell performance and durability still exist after extended operation? We provide an answer to this question by comparing the performance and durability of a PEMFC under open-circuit voltage (OCV) and a commercial short-circuiting protocol, against a PEMFC under OCV without short-circuiting for the same extended period (āˆ¼144 h). The experimental results demonstrate the detrimental effect of extended short-circuiting on the durability of the catalyst and the performance of the fuel cell. Electrochemically active surface area losses reach āˆ¼46% for the short-circuiting case, compared to only āˆ¼18% losses for the OCV without short-circuiting. TEM and XPS measurements are employed to monitor the morphological changes of the catalyst layer, revealing that Ostwald ripening, carbon corrosion, and Pt migration and precipitation into the polymer membrane are the main degradation mechanisms of the cathode catalyst layer. At the end of PEMFC operation, XPS measurements reveal that only āˆ¼0.1% (atomic) of Pt remains on the surface of the cathode catalyst layer after OCV with short-circuiting, compared to the initial āˆ¼0.4% Pt of the unused cathode MEA and āˆ¼0.3% Pt for the cathode MEA after OCV without short-circuiting. These results show that short-circuiting can cause facile degradation of the catalyst layer and significant decrease in fuel cell performance, rendering this technique non-beneficial for extended operation

    Hydration state diagnosis in fractal flow-field based polymer electrolyte membrane fuel cells using acoustic emission analysis

    Get PDF
    Techniques for evaluating water management are critical to diagnose the performance of polymer electrolyte membrane fuel cells (PEMFCs). Acoustic emission as a function of polarisation (AEfP) has been recently introduced as a non-invasive, non-destructive method to analyse the water generation and removal inside a PEMFC during polarisation. AEfP was shown to provide unique insight into water management within a conventional PEMFC and correlating it to cell performance. Here, AEfP is used to characterise the performance of fractal PEMFCs by evaluating the hydration conditions inside them. This is achieved by probing the water dynamics inside two different fractal flow-field based PEMFCs, namely 1-way and 2-way fractal PEMFCs, and measuring the corresponding acoustic activity generated from them. AEfP is performed on the fractal PEMFCs under relatively humid (70% RH) and fully humidified (100% RH) reactant relative humidity (RH) conditions. Flooding in the 2-way fractal PEMFC, as opposed to the 1-way fractal PEMFC, is demonstrated under different operating conditions by the relatively higher acoustic activity it generates. Corroborating evidence of flooding in the 2-way fractal flow-field under different conditions is provided by its polarisation curves, impedance tests and galvanostatic (current hold) measurements

    Using Group Model Building to Understand Factors That Influence Childhood Obesity in an Urban Environment

    Get PDF
    Background: Despite increased attention, conventional views of obesity are based upon individual behaviors, and children and parents living with obesity are assumed to be the primary problem solvers. Instead of focusing exclusively on individual reduction behaviors for childhood obesity, greater focus should be placed on better understanding existing community systems and their effects on obesity. The Milwaukee Childhood Obesity Prevention Project is a community-based coalition established to develop policy and environmental change strategies to impact childhood obesity in Milwaukee, Wisconsin. The coalition conducted a Group Model Building exercise to better understand root causes of childhood obesity in its community. Methods: Group Model Building is a process by which a group systematically engages in model construction to better understand the systems that are in place. It helps participants make their mental models explicit through a careful and consistent process to test assumptions. This process has 3 main components: (1) assembling a team of participants; (2) conducting a behavior-over-time graphs exercise; and (3) drawing the causal loop diagram exercise. Results: The behavior-over-time graph portion produced 61 graphs in 10 categories. The causal loop diagram yielded 5 major themes and 7 subthemes. Conclusions: Factors that influence childhood obesity are varied, and it is important to recognize that no single solution exists. The perspectives from this exercise provided a means to create a process for dialogue and commitment by stakeholders and partnerships to build capacity for change within the community

    The Hydro-electro-thermal Performance of Air-cooled, Open-cathode Polymer Electrolyte Fuel Cells: Combined Localised Current Density, Temperature and Water Mapping

    Get PDF
    In situ diagnostic techniques provide a means of understanding the internal workings of fuel cells so that improved designs and operating regimes can be identified. Here, a novel metrology approach is reported that combines current and temperature mapping with water visualisation using neutron radiography. The approach enables a hydro-electro-thermal performance map to be generated that is applied to an air-cooled, open-cathode polymer electrolyte fuel cell. This type of fuel cell exhibits a particularly interesting coupled relationship between water, current and heat, as the air supply has the due role of cooling the stack as well as providing the cathode reactant feed via a single source. It is found that water predominantly accumulates under the cooling channels (thickness of 70-100 Ī¼m under the cooling channels and 5-25 Ī¼m in the active channels at 0.5 A cmāˆ’2), in a similar fashion to the lands in a closed-cathode design, but contrary to passive open-cathode systems. The relationship between current, temperature and water accumulation is complex and highly dependent on location within the cell. However, there is a general trend that higher currents and cooling limitations, especially above 0.7 A cmāˆ’2 and below 3.9 Ɨ 10āˆ’3 m3 sāˆ’1, leads to temperatures above 60 Ā°C, which dehydrate the membrane (water thickness of 10-25 um) and the cell operates below 0.5 V

    Investigation of cycling-induced microstructural degradation in silicon-based electrodes in lithium-ion batteries using X-ray nanotomography

    Get PDF
    The microstructural degradation of a composite silicon electrode at different stages in its cycle life was investigated in 3D using X-ray nano-computed tomography. A reconstructed volume of 36 Ī¼m Ɨ 27 Ī¼m Ɨ 26 Ī¼m from the composite electrode was imaged in its pristine state and after 1, 10 and 100 cycles. Particle fracturing and phase transformation was observed within the electrode with increased cycling. In addition, a distinct, lower X-ray attenuating phase was clearly resolved, which can be associated with surface film formation resulting from electrolyte breakdown and with silicon particle phase transformation. Changes in quantified microstructural properties such as phase volume fraction and particle specific surface area were tracked. Electrode performance loss is associated with loss of active silicon. These imaging results further highlight the capability of high resolution X-ray tomography to investigate the role of electrode microstructure in battery degradation and failure

    DNA Interaction with Palladium Chelates of Biogenic Polyamines Using Atomic Force Microscopy and Voltammetric Characterization

    Get PDF
    The interaction of double-stranded DNA with two polynuclear Pd(II) chelates with the biogenic polyamines spermidine (Spd) and spermine (Spm), Pd(II)-Spd and Pd(II)-Spm, as well as with the free ligands Spd and Spm, was studied using atomic force microscopy (AFM) at a highly oriented pyrolytic graphite (HOPG) surface, voltammetry at a glassy carbon (GC) electrode, and gel electrophoresis. The AFM and voltammetric results showed that the interaction of Spd and Spm with DNA occurred even for a low concentration of polyamines and caused no oxidative damage to DNA. The Pd(II)-Spd and Pd(II)-Spm complexes were found to induce greater morphological changes in the dsDNA conformation, when compared with their ligands. The interaction was specific, inducing distortion and local denaturation of the B-DNA structure with release of some guanine bases. The DNA strands partially opened give rise to palladium intra- and interstrand cross-links, leading to the formation of DNA adducts and aggregates, particularly in the case of the Pd(II)-Spd complex

    Optimisation of air cooled, open-cathode fuel cells: Current of lowest resistance and electro-thermal performance mapping

    Get PDF
    Selecting the ideal operating point for a fuel cell depends on the application and consequent trade-off between efficiency, power density and various operating considerations. A systematic methodology for determining the optimal operating point for fuel cells is lacking; there is also the need for a single-value metric to describe and compare fuel cell performance. This work shows how the ā€˜current of lowest resistanceā€™ can be accurately measured using electrochemical impedance spectroscopy and used as a useful metric of fuel cell performance. This, along with other measures, is then used to generate an ā€˜electro-thermal performance mapā€™ of fuel cell operation. A commercial air-cooled open-cathode fuel cell is used to demonstrate how the approach can be used; in this case leading to the identification of the optimum operating temperature of āˆ¼45 Ā°C
    • ā€¦
    corecore